Improvements in main memory storage density are primarily driven by process technology scaling, which negatively impacts reliability by exacerbating various circuit-level error mechanisms. To compensate for growing error rates, both memory manufacturers and consumers use error-mitigation mechanisms that improve manufacturing yield and allow system designers to meet reliability targets. Developing effective error mitigations requires understanding the errors' characteristics (e.g., worst-case behavior, statistical properties). Unfortunately, we observe that proprietary on-die Error-Correcting Codes (ECC) used in modern memory chips introduce new challenges to efficient error mitigation by obfuscating CPU-visible error characteristics in an unpredictable, ECC-dependent manner. This dissertation builds a detailed understanding of how on-die ECC obfuscates the statistical properties of main memory error mechanisms using a combination of real-chip experiments and statistical analyses. We experimentally study memory errors, examine how on-die ECC obfuscates their statistical characteristics, and develop new testing techniques to overcome the obfuscation. Our results show that the obfuscated error characteristics can be recovered using new memory testing techniques that exploit the interaction between on-die ECC and the statistical characteristics of memory error mechanisms to expose physical cell behavior. We conclude by discussing the critical need for transparency in DRAM reliability characteristics in order to enable DRAM consumers to better understand and adapt commodity DRAM chips to their system-specific needs. We hope and believe that the analysis, techniques, and results we present in this dissertation will enable the community to better understand and tackle current and future reliability challenges as well as adapt commodity memory to new advantageous applications.


翻译:改进主要存储存储密度主要是由流程技术的提升驱动的,这通过加剧各种电路级误差机制对可靠性产生不利影响。为了弥补不断上升的误差率,记忆制造商和消费者都使用减少误差的机制,提高制造业产量,使系统设计者能够达到可靠性目标。 制定有效的误差减缓办法需要了解误差的特征(例如最坏情况行为、统计属性等)。 不幸的是,我们注意到,现代记忆芯片中使用的专利在线误差校准代码(ECC)给有效减少误差带来了新的挑战,因为通过以不可预测的、依赖ECC的可靠性的方式模糊的CPU可识别误差特性,从而对可靠性产生消极影响。这种分解有助于详细了解主要的误差机制的统计特性,同时结合实芯片实验和统计分析。 我们实验性地研究误判ECC的误差,研究如何校正其统计特征,并开发新的测试技术,以克服易解的难题。我们的结果表明,无法用新的误差性误差特性来恢复 CRC的当前误差特性应用方法,通过统计性特性分析,使DRM的误判机制能够使C的误判。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
0+阅读 · 2022年6月7日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员