Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,351 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.
翻译:遥感技术在灾害监测中至关重要,然而现有数据集缺乏时序图像对及详细的文本标注。尽管当前资源以单时相影像为主,但其无法捕捉灾害随时间的动态影响。为填补这一空白,我们提出了遥感变化描述(RSCC)数据集——一个包含62,351组灾前/灾后图像对(涵盖地震、洪水、野火等多种灾害)并配以丰富类人变化描述的大规模基准数据集。通过弥合遥感数据中的时序与语义鸿沟,RSCC能够为灾害感知的双时相理解任务提供稳健的视觉-语言模型训练与评估平台。实验结果表明,RSCC可有效支撑细粒度的灾害关联分析,为遥感领域更精准、可解释、可扩展的视觉-语言应用铺平道路。代码与数据集公开于https://github.com/Bili-Sakura/RSCC。