Time series analysis is of immense importance in extensive applications, such as weather forecasting, anomaly detection, and action recognition. This paper focuses on temporal variation modeling, which is the common key problem of extensive analysis tasks. Previous methods attempt to accomplish this directly from the 1D time series, which is extremely challenging due to the intricate temporal patterns. Based on the observation of multi-periodicity in time series, we ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations. To tackle the limitations of 1D time series in representation capability, we extend the analysis of temporal variations into the 2D space by transforming the 1D time series into a set of 2D tensors based on multiple periods. This transformation can embed the intraperiod- and interperiod-variations into the columns and rows of the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D kernels. Technically, we propose the TimesNet with TimesBlock as a task-general backbone for time series analysis. TimesBlock can discover the multi-periodicity adaptively and extract the complex temporal variations from transformed 2D tensors by a parameter-efficient inception block. Our proposed TimesNet achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection. Code is available at this repository: https://github.com/thuml/TimesNet.


翻译:时间序列分析在广泛应用中具有巨大重要性,例如气象预报、异常检测和动作识别。本文关注于时间序列中的时间变化建模,这是广泛分析任务的共同关键问题。先前的方法试图直接从一维时间序列中实现这一点,由于复杂的时间模式,这是极其困难的。基于对时间序列中的多周期性的观察,我们将复杂的时间变化分解成多个周期内和周期间的变化。为了解决一维时间序列表示能力的限制,我们将时间变化分析扩展到二维空间中,通过将一维时间序列转换为基于多个周期的一组二维张量来实现。这种转换可以将周期内和周期间的变化分别嵌入到二维张量的列和行中,从而使二维变化可以通过二维卷积核轻松地建模。在技术方面,我们提出了基于时间序列的二维变化建模框架TimesNet,并使用TimesBlock作为通用任务的骨干网络。通过一个效率高的Inception模块,TimesBlock可以自适应地发现多周期性,并从转换后的二维张量中提取复杂的时间变化。我们的提出的TimesNet在五个主流时间序列分析任务中均取得了始终如一的最先进水平,包括短期和长期预测、填充、分类和异常检测。该研究的代码已开源于https://github.com/thuml/TimesNet。

0
下载
关闭预览

相关内容

时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。经济数据中大多数以时间序列的形式给出。根据观察时间的不同,时间序列中的时间可以是年份、季度、月份或其他任何时间形式。
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
60+阅读 · 2021年12月19日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
50+阅读 · 2020年12月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ICML2022丨时间序列论文汇总
机器学习与推荐算法
4+阅读 · 2022年8月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月27日
VIP会员
相关VIP内容
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
60+阅读 · 2021年12月19日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
50+阅读 · 2020年12月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ICML2022丨时间序列论文汇总
机器学习与推荐算法
4+阅读 · 2022年8月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员