In this paper, we consider the problem of activity detection in grant-free code-domain non-orthogonal multiple access (NOMA). We focus on performing activity detection via subspace methods under a setup where the data and pilot spreading signatures are of different lengths, and consider a realistic frame-structure similar to existing mobile networks. We investigate the impact of channel correlation on the activity detection performance; first, we consider the case where the channel exhibits high correlation in time and frequency and show how it can heavily deteriorate the performance. To tackle that, we propose to apply user-specific masking sequences overlaid on top of the pilot signatures. Second, we consider the other extreme with the channel being highly selective, and show that it can also negatively impact the performance. We investigate possible pilots' reallocation strategies that can help reduce its impact.
翻译:在本文中,我们考虑了在无赠款代码域域非横向多重访问(NOMA)中的活动探测问题。我们侧重于在数据和试点传播信号长度不同的设置下,通过子空间方法进行活动探测,并考虑一个与现有移动网络类似的现实框架结构。我们调查了频道对活动探测性能的关联性影响;首先,我们考虑了频道在时间和频率上表现出高度关联性并表明它能够严重恶化性能的案例。为了解决这个问题,我们提议在试点签名上加盖用户专用掩码序列。第二,我们认为频道的另一极端是高度选择性的,并表明它也可以对业绩产生消极影响。我们调查了可能有助于减少其影响的试点重新分配战略。