We study separations between two fundamental models (or \emph{Ans\"atze}) of antisymmetric functions, that is, functions $f$ of the form $f(x_{\sigma(1)}, \ldots, x_{\sigma(N)}) = \text{sign}(\sigma)f(x_1, \ldots, x_N)$, where $\sigma$ is any permutation. These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems. Specifically, we consider two popular antisymmetric Ans\"atze: the Slater representation, which leverages the alternating structure of determinants, and the Jastrow ansatz, which augments Slater determinants with a product by an arbitrary symmetric function. We construct an antisymmetric function that can be more efficiently expressed in Jastrow form, yet provably cannot be approximated by Slater determinants unless there are exponentially (in $N^2$) many terms. This represents the first explicit quantitative separation between these two Ans\"atze.
翻译:我们研究对称函数的两个基本模型(或 \ emph{ Ans\"atze} ), 即, 函数( 或 \ emph{ Ans\" atze} ) 的反对称函数的两种基本模型( 或 \ emph{ Ans\" atze} ) 之间的分离, 即, 函数( 或 \ \ {x { { {x { { { } } ), 函数( 或 \ \ {x { { { { { { } } ) =\ text{ { { sign} (x_ 1, \ ldots, x_ N) = $ ( ) ) 。 这是量子化学中产生的, 并且是 Fermionic 系统波函数的基本模型工具。 。 具体地说, 我们考虑两种流行的反对 AS\ atze 的模型工具是 。 。 。 。 : : later at sather pist se are the the the the bese are the the the the fir maxivelentalent.