With the development of human space exploration, the space environment is gradually filled with abandoned satellite debris and unknown micrometeorites, which will seriously affect capture motion of space robot. Hence, a novel fast collision-avoidance trajectory planning strategy for a dual-arm free-floating space robot (FFSR) with predefined-time pose feedback will be mainly studied to achieve micron-level tracking accuracy of end-effector in this paper. However, similar to control, the exponential feedback results in larger initial joint angular velocity relative to proportional feedback. Firstly, a pose-error-based kinematic model of the FFSR will be derived from a control perspective. Then, a cumulative dangerous field (CDF) collision-avoidance algorithm is applied in predefined-time trajectory planning to achieve micron-level collision-avoidance trajectory tracking precision. In the end, a GA-based optimization algorithm is used to optimize the predefined-time parameter to obtain a motion trajectory of low joint angular velocity of robotic arms. The simulation results verify our conjecture and conclusion.
翻译:随着人类空间探索的发展,空间环境将逐渐被废弃的卫星碎片和未知微流星体填满,这将严重影响空间机器人的捕捉运动,因此,对预先确定时间的双臂自由漂移空间机器人(FFSR)将进行新的快速避免碰撞轨迹规划战略研究,主要是为了在本文件中实现终端效应的微级跟踪精确度。不过,与控制类似,指数反馈的结果是相对于比例反馈的较大型的初始角速度。首先,将从控制角度得出FFSR的基于表面的动态模型。然后,在预先确定的时间轨迹规划中应用累积的危险场(CDF)避免碰撞轨迹算法,以实现微级碰撞避免轨迹跟踪精确度。最后,使用基于GA的优化算法优化了预先确定时间参数,以获得与比例反馈相对的低联合角速度的运动轨迹。模拟结果验证了我们的预测和结论。