Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal. There has been a growing research interest for developing effective methods for stance detection methods varying among multiple communities including natural language processing, web science, and social computing. This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media. It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied. The survey reports state-of-the-art results on the existing benchmark datasets on stance detection, and discusses the most effective approaches. In addition, this study explores the emerging trends and different applications of stance detection on social media. The study concludes by discussing the gaps in the current existing research and highlights the possible future directions for stance detection on social media.
翻译:社会媒体的发现是各种社会和政治应用的新观点挖掘模式,其情绪分析可能不尽人意; 研究越来越关注制定有效方法,用于各种社区之间不同的立场探测方法,包括自然语言处理、网络科学和社会计算; 本文调查这些社区内的立场探测工作,并将其用于社交媒体中目前的意见挖掘技术; 详尽地审查社交媒体上的立场探测技术,包括任务定义、姿态探测的不同类型目标、使用的特征和采用的各种机器学习方法; 调查报告关于现有立场探测基准数据集的最新结果,并讨论最有效的方法; 此外,本研究报告探讨了社会媒体上的立场探测的新趋势和不同应用; 研究报告最后讨论了现有研究的差距,并着重指出了在社交媒体上发现立场的可能未来方向。