The Whittle-Mat\'ern fields are a recently introduced class of Gaussian processes on metric graphs, which are specified as solutions to a fractional-order stochastic differential equation on the metric graph. Contrary to earlier covariance-based approaches for specifying Gaussian fields on metric graphs, the Whittle-Mat\'ern fields are well-defined for any compact metric graph and can provide Gaussian processes with differentiable sample paths given that the fractional exponent is large enough. We derive the main statistical properties of the model class. In particular, consistency and asymptotic normality of maximum likelihood estimators of model parameters as well as necessary and sufficient conditions for asymptotic optimality properties of linear prediction based on the model with misspecified parameters. The covariance function of the Whittle-Mat\'ern fields is in general not available in closed form, which means that they have been difficult to use for statistical inference. However, we show that for certain values of the fractional exponent, when the fields have Markov properties, likelihood-based inference and spatial prediction can be performed exactly and computationally efficiently. This facilitates using the Whittle-Mat\'ern fields in statistical applications involving big datasets without the need for any approximations. The methods are illustrated via an application to modeling of traffic data, where the ability to allow for differentiable processes greatly improves the model fit.


翻译:Whittle-Mat\'ern场是最近在度量图上引入的一类高斯过程,其被定义为在度量图上分数阶随机微分方程的解。与早期基于协方差的方法不同,这些场在任何紧凑度量图上都是定义良好的,并且可以提供有可微样本路径的高斯过程,只要分数幂足够大即可。我们导出了模型类的主要统计性质。特别是,模型参数的最大似然估计器的一致性和渐近正态性,以及基于参数误报模型的线性预测的渐近最优性条件的必要性和充分性。Whittle-Mat\'ern场的协方差函数通常无法以封闭形式表示,这意味着它们难以用于统计推断。然而,我们表明,在某些分数幂的值,当场具有马尔可夫属性时,可以精确和计算有效地执行基于似然的推理和空间预测。这有助于在涉及大型数据集的统计应用中使用Whittle-Mat\'ern场,而无需任何近似。该方法通过对交通数据建模进行了演示,其中允许差分处理可以极大地改善模型拟合。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员