As the role of information and communication technologies gradually increases in our lives, source code security becomes a significant issue to protect against malicious attempts Furthermore with the advent of data-driven techniques, there is now a growing interest in leveraging machine learning and natural language processing as a source code assurance method to build trustworthy systems Therefore training our future software developers to write secure source code is in high demand In this thesis we propose a framework including learning modules and hands on labs to guide future IT professionals towards developing secure programming habits and mitigating source code vulnerabilities at the early stages of the software development lifecycle In this thesis our goal is to design learning modules with a set of hands on labs that will introduce students to secure programming practices using source code and log file analysis tools to predict and identify vulnerabilities In a Secure Coding Education framework we will improve students skills and awareness on source code vulnerabilities detection tools and mitigation techniques integrate concepts of source code vulnerabilities from Function API and library level to bad programming habits and practices leverage deep learning NLP and static analysis tools for log file analysis to introduce the root cause of source code vulnerabilities
翻译:随着信息和通信技术在生活中的作用逐渐增加,源码安全成为防止恶意企图的重要问题。 随着数据驱动技术的出现,人们越来越有兴趣利用机器学习和自然语言处理作为建立可信赖系统的源代码保证方法。 因此,培训我们未来的软件开发者编写安全源代码非常需要。 在这个论文中,我们提议了一个框架,包括学习模块和实验室手法,以指导未来的信息技术专业人员在软件开发生命周期的早期阶段发展安全的编程习惯,并减轻源码脆弱性。 在这个理论中,我们的目标是设计学习模块,由一组人手来设计实验室,让学生们使用源代码和日志文件分析工具,使用源代码和日志文件分析工具来预测和识别脆弱性。 在安全编码教育框架内,我们将提高学生对源代码脆弱性检测工具和缓解技术的认识,并将源代码脆弱性检测工具的概念从功能API和图书馆一级综合到不良的编程习惯和做法,利用深学习NLP和静态分析工具,用于记录文档分析,以介绍源码脆弱性的根源原因。