The popularity of Neural Radiance Fields (NeRFs) for view synthesis has led to a desire for NeRF editing tools. Here, we focus on inpainting regions in a view-consistent and controllable manner. In addition to the typical NeRF inputs and masks delineating the unwanted region in each view, we require only a single inpainted view of the scene, i.e., a reference view. We use monocular depth estimators to back-project the inpainted view to the correct 3D positions. Then, via a novel rendering technique, a bilateral solver can construct view-dependent effects in non-reference views, making the inpainted region appear consistent from any view. For non-reference disoccluded regions, which cannot be supervised by the single reference view, we devise a method based on image inpainters to guide both the geometry and appearance. Our approach shows superior performance to NeRF inpainting baselines, with the additional advantage that a user can control the generated scene via a single inpainted image. Project page: https://ashmrz.github.io/reference-guided-3d
翻译:流行的神经辐射场(NeRFs)用于视图合成已导致对NeRF编辑工具的需求。在这里,我们专注于以视图一致和可控的方式修复部分区域。除了典型的NeRF输入和每个视图中定义不需要的区域的掩码外,我们仅需要场景的一个修补视图,即一个参考视图。我们使用单眼深度估计器将修补视图背投影到正确的三维位置。然后,通过一种新颖的渲染技术,双边求解器可以在非参考视图中构建视图相关效果,使修补区域从任何视角看起来一致。对于非参考错位区域,无法通过单个参考视图进行监督,我们设计了一种基于图像修补器的方法来引导几何和外观。我们的方法显示出优于NeRF修补基线的性能,而且有一个额外的优势,即用户可以通过一个修补图像来控制生成的场景。项目页面:https://ashmrz.github.io/reference-guided-3d