In the conventional robust $T$-colluding private information retrieval (PIR) system, the user needs to retrieve one of the possible messages while keeping the identity of the requested message private from any $T$ colluding servers. Motivated by the possible heterogeneous privacy requirements for different messages, we consider the $(N, T_1:K_1, T_2:K_2)$ two-level PIR system with a total of $K_2$ messages in the system, where $T_1\geq T_2$ and $K_1\leq K_2$. Any one of the $K_1$ messages needs to be retrieved privately against $T_1$ colluding servers, and any one of the full set of $K_2$ messages needs to be retrieved privately against $T_2$ colluding servers. We obtain a lower bound to the capacity by proposing two novel coding schemes, namely the non-uniform successive cancellation scheme and the non-uniform block cancellation scheme. A capacity upper bound is also derived. The gap between the upper bound and the lower bounds is analyzed, and shown to vanish when $T_1=T_2$. Lastly, we show that the upper bound is in general not tight by providing a stronger bound for a special setting.
翻译:在传统的富有活力的$T$和2美元的私人信息检索系统(PIR)中,用户需要从任何串通服务器上检索其中一条可能的信息,同时要保持所请求的信息的身份,同时要从任何美元串通服务器上获取其中一条。受不同信息可能的不同隐私要求的驱使,我们认为$(N),T_1K_1,T_2:K_2)为美元双级PIR系统,系统内的信息总额为K_2美元,总共为K_1\geq T_2美元和K_1\leqK_2美元。任何K_1美元的信息都需要用$T_1美元的串通服务器私下检索所请求的信息,而任何一套全套$K_2美元的信息需要用美元私下检索。我们通过提出两种新型的编码计划,即非统一式取消计划和非统一式取消计划,获得较低的能力。还得出了一个上限。上层框和下层框中的任何一条需要用$1美元来私取,而下层框中的任何一条信息需要用美元来进行分析,在总框内显示较强的上框中显示。