We show Riemannian geometry could be studied by identifying the tangent bundle of a Riemannian manifold $\mathcal{M}$ with a subbundle of the trivial bundle $\mathcal{M} \times \mathcal{E}$, obtained by embedding $\mathcal{M}$ differentiably in a Euclidean space $\mathcal{E}$. Given such an embedding, we can extend the metric tensor on $\mathcal{M}$ to a (positive-definite) operator-valued function acting on $\mathcal{E}$, giving us an embedded ambient structure. The formulas for the Christoffel symbols and Riemannian curvature in local coordinates have simple generalizations to this setup. For a Riemannian submersion $\mathfrak{q}:\mathcal{M}\to \mathcal{B}$ from an embedded manifold $\mathcal{M}\subset \mathcal{E}$, we define a submersed ambient structure and obtain similar formulas, with the O'Neil tensor expressed in terms of the projection to the horizontal bundle $\mathcal{H}\mathcal{M}$. Using this framework, we provide the embedded and submersed ambient structures for the double tangent bundle $\mathcal{T}\mathcal{T}\mathcal{M}$ and the tangent of the horizontal bundle $\mathcal{T}\mathcal{H}\mathcal{M}$, describe the fibration of a horizontal bundle over the tangent bundle of the base manifold and extend the notion of a canonical flip to the submersion case. We obtain a formula for horizontal lifts of Jacobi fields, and a new closed-form formula for Jacobi fields of naturally reductive homogeneous spaces. We construct natural metrics on these double tangent bundles, in particular, extending Sasaki and other natural metrics to the submersion case. We illustrate by providing explicit calculations for several manifolds.
翻译:我们通过在 Euclidean 空间内嵌入 $\ mathcal{E} 来显示 Riemann 的几何测量方法。 在这种嵌入中,我们可以将 Rienmann 方块的正值捆绑 $\ mathcal{ m} 以小块的子折叠 $\ mathcal{ m} 来识别Rienmann 方块的正值折叠件 $\ macal{macal{ m} 美元到一个(正确定方块的) 运算器的正值折叠叠叠件 $\ m} 以美元 平面的平面块平面块块 。 我们通过一个嵌入的 $mexcal=cal=cal=cal=cal=cal=cal=lal=lal=lal=xxxxxxxxxxlal=mal_ mal macal=lal=xxxx mamamasal modeal=x a modeal modeal=x modeal=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx