We propose a general agent population learning system, and on this basis, we propose lineage evolution reinforcement learning algorithm. Lineage evolution reinforcement learning is a kind of derivative algorithm which accords with the general agent population learning system. We take the agents in DQN and its related variants as the basic agents in the population, and add the selection, mutation and crossover modules in the genetic algorithm to the reinforcement learning algorithm. In the process of agent evolution, we refer to the characteristics of natural genetic behavior, add lineage factor to ensure the retention of potential performance of agent, and comprehensively consider the current performance and lineage value when evaluating the performance of agent. Without changing the parameters of the original reinforcement learning algorithm, lineage evolution reinforcement learning can optimize different reinforcement learning algorithms. Our experiments show that the idea of evolution with lineage improves the performance of original reinforcement learning algorithm in some games in Atari 2600.
翻译:我们提议了一个一般代理人口学习系统,并在此基础上,我们提议了线际进化强化学习算法。线际进化强化学习是一种与一般代理人口学习系统相匹配的衍生算法。我们把DQN及其相关变异物中的代理作为人口的基本代理法,并将遗传算法中的选择、突变和交叉模块添加到强化学习算法中。在代理人进化过程中,我们提到自然遗传行为的特点,增加线际因子以确保保持代理人的潜在性能,并在评估代理人的性能时全面考虑当前的性能和线际价值。在不改变原始强化学习算法参数的情况下,线际进化强化学习学习学习可以优化不同的强化学习算法。我们的实验表明,在阿塔里(Atari)2600年的一些游戏中,随着线际进化而改进原始强化学习算法的性能。