Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine learning classifiers and state-of-the-art neural language models. We analyze preprints of research papers, graduation theses, and Wikipedia articles, which we paraphrased using different configurations of the tools SpinBot and SpinnerChief. The best performing technique, Longformer, achieved an average F1 score of 80.99% (F1=99.68% for SpinBot and F1=71.64% for SpinnerChief cases), while human evaluators achieved F1=78.4% for SpinBot and F1=65.6% for SpinnerChief cases. We show that the automated classification alleviates shortcomings of widely-used text-matching systems, such as Turnitin and PlagScan. To facilitate future research, all data, code, and two web applications showcasing our contributions are openly available.
翻译:使用抛光工具来隐藏被塑文本是对学术完整性的严重威胁。 为了能够检测机器自译自审文本, 我们评估了五个经过训练的字嵌入模型的有效性, 以及机器学习分类器和最新神经语言模型。 我们分析了研究论文、 毕业论文 和维基百科文章的预印本, 我们用 SpinBot 和 Spinner Cheel 等工具的不同配置来解释这些预印文章 。 最出色的技术, Longferent 取得了80.99%的F1平均分( spinBot 的F1=99.68% 和 SpinnerCein 的F1=71.64% ), 而人类评价员在 SpinBot 和 F1=65.6% 中达到了F1=78.4%, 斯pinnercecience 的F1=65.6% 。 我们显示, 自动化的分类减轻了广泛使用的文本匹配系统的缺陷, 如 Turnitin 和 PlagScan。 为了便利未来的研究, 所有数据、 代码和两个显示我们贡献的网络应用程序都公开可用 。