Histopathological images contain abundant phenotypic information and pathological patterns, which are the gold standards for disease diagnosis and essential for the prediction of patient prognosis and treatment outcome. In recent years, computer-automated analysis techniques for histopathological images have been urgently required in clinical practice, and deep learning methods represented by convolutional neural networks have gradually become the mainstream in the field of digital pathology. However, obtaining large numbers of fine-grained annotated data in this field is a very expensive and difficult task, which hinders the further development of traditional supervised algorithms based on large numbers of annotated data. More recent studies have started to liberate from the traditional supervised paradigm, and the most representative ones are the studies on weakly supervised learning paradigm based on weak annotation, semi-supervised learning paradigm based on limited annotation, and self-supervised learning paradigm based on pathological image representation learning. These new methods have led a new wave of automatic pathological image diagnosis and analysis targeted at annotation efficiency. With a survey of over 130 papers, we present a comprehensive and systematic review of the latest studies on weakly supervised learning, semi-supervised learning, and self-supervised learning in the field of computational pathology from both technical and methodological perspectives. Finally, we present the key challenges and future trends for these techniques.
翻译:近些年来,临床实践迫切需要对病理学图像进行计算机自动化分析,临床实践迫切需要对病理学图像进行计算机自动分析,而遗传神经网络所代表的深层学习方法已逐渐成为数字病理学领域的主流,然而,在这一领域获得大量细微的附加说明的数据是一项非常昂贵和困难的任务,妨碍根据大量附加说明的数据进一步发展传统的受监督算法;最近开始从传统的受监督范式中解放更多的研究,最有代表性的研究是基于薄弱的注解、基于有限的注解的半受监督学习范式和基于病理图象表述学习的自我监督学习范式,这些新方法导致以说明效率为目标的自动病理图像诊断和分析新浪潮。通过对130多份文件的调查,我们全面、系统地审查了目前关于薄弱的受监督学习模式的学习模式,从微弱的实地、经过监督的实地和最后的学习方法,从这些经监督的实地和最后的学习方法,从这些薄弱的实地、经过监督的实地、经过自我学习的学习方法,从最后的实地和最后的学习方法,从这些经监管的实地学习的学习方法的最近研究中,从这些方法和最后的学习方法的学习方法。