English is the international standard of social research, but scholars are increasingly conscious of their responsibility to meet the need for scholarly insight into communication processes globally. This tension is as true in computational methods as any other area, with revolutionary advances in the tools for English language texts leaving most other languages far behind. In this paper, we aim to leverage those very advances to demonstrate that multi-language analysis is currently accessible to all computational scholars. We show that English-trained measures computed after translation to English have adequate-to-excellent accuracy compared to source-language measures computed on original texts. We show this for three major analytics -- sentiment analysis, topic analysis, and word embeddings -- over 16 languages, including Spanish, Chinese, Hindi, and Arabic. We validate this claim by comparing predictions on original language tweets and their backtranslations: double translations from their source language to English and back to the source language. Overall, our results suggest that Google Translate, a simple and widely accessible tool, is effective in preserving semantic content across languages and methods. Modern machine translation can thus help computational scholars make more inclusive and general claims about human communication.


翻译:英语是社会研究的国际标准,但学者们日益意识到他们有责任满足对全球通信进程进行学术深入了解的需要。在计算方法方面,这种紧张状况与其他任何领域一样,在英文文本工具方面革命性的进展使大多数其他语文远远落后。在本文件中,我们的目标是利用这些进展来证明目前所有计算学者都可以获得多语种分析。我们显示,翻译成英文后计算出来的英语培训措施与原始文本计算出来的原始语言措施相比,具有充分到极优的准确性。我们展示了三种主要分析方法 -- -- 情绪分析、专题分析、和词嵌入 -- -- 超过16种语言,包括西班牙语、中文、印地语和阿拉伯语。我们通过比较原始语言推文的预测及其背译,即将原始语言翻成英语和回源语言的双重翻译,来证实这一说法。总的来说,我们的结果表明,Google Translat是一个简单和广泛可使用的工具,能够有效保存各种语言和方法的语义内容。现代机器翻译可以帮助计算学者就人类通信提出更具包容性和普遍性的主张。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月10日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员