Travel-time prediction constitutes a task of high importance in transportation networks, with web mapping services like Google Maps regularly serving vast quantities of travel time queries from users and enterprises alike. Further, such a task requires accounting for complex spatiotemporal interactions (modelling both the topological properties of the road network and anticipating events -- such as rush hours -- that may occur in the future). Hence, it is an ideal target for graph representation learning at scale. Here we present a graph neural network estimator for estimated time of arrival (ETA) which we have deployed in production at Google Maps. While our main architecture consists of standard GNN building blocks, we further detail the usage of training schedule methods such as MetaGradients in order to make our model robust and production-ready. We also provide prescriptive studies: ablating on various architectural decisions and training regimes, and qualitative analyses on real-world situations where our model provides a competitive edge. Our GNN proved powerful when deployed, significantly reducing negative ETA outcomes in several regions compared to the previous production baseline (40+% in cities like Sydney).
翻译:在运输网络中,旅行时间预测是一项非常重要的任务,如谷歌地图等网络制图服务经常为用户和企业的大量旅行时间查询提供大量时间查询服务。此外,这一任务还要求对复杂的时空互动(模拟道路网络的地形特征和预期事件 -- -- 例如未来可能发生的高峰时间 -- -- )进行会计核算。因此,它是规模图示学习的理想目标。我们在这里展示了在谷歌地图制作中部署的估计到达时间的图形神经网络估计值(ETA)。虽然我们的主要结构由标准的GNN建筑块组成,但我们进一步详细说明了培训时间表方法的使用,例如MetaGradients(MetaGrients),以便使我们的模型变得稳健和易于制作。我们还提供了规范性研究:汇总各种建筑决定和培训制度,以及对我们模型具有竞争优势的实际情况进行定性分析。我们GNNN在部署时证明,与悉尼等城市以前的生产基线相比,在几个区域显著减少了负面的ETA结果。