A key distinguishing feature of conversational recommender systems over traditional recommender systems is their ability to elicit user preferences using natural language. Currently, the predominant approach to preference elicitation is to ask questions directly about items or item attributes. These strategies do not perform well in cases where the user does not have sufficient knowledge of the target domain to answer such questions. Conversely, in a shopping setting, talking about the planned use of items does not present any difficulties, even for those that are new to a domain. In this paper, we propose a novel approach to preference elicitation by asking implicit questions based on item usage. Our approach consists of two main steps. First, we identify the sentences from a large review corpus that contain information about item usage. Then, we generate implicit preference elicitation questions from those sentences using a neural text-to-text model. The main contributions of this work also include a multi-stage data annotation protocol using crowdsourcing for collecting high-quality labeled training data for the neural model. We show that our approach is effective in selecting review sentences and transforming them to elicitation questions, even with limited training data. Additionally, we provide an analysis of patterns where the model does not perform optimally.
翻译:与传统推荐人系统相比,对话推荐人系统相对于传统推荐人系统的一个关键显著特征是,它们能够以自然语言吸引用户的偏好。目前,优先引领的主要方法是直接询问项目或项目属性的问题。这些战略在用户对目标领域没有足够的知识来回答这些问题的情况下效果不佳。相反,在购物环境中,谈论项目的计划使用并不带来任何困难,即使是那些新到领域的新项目。在本文件中,我们提议一种新办法,通过根据项目使用情况提出隐含的问题来激发偏好。我们的方法由两个主要步骤组成。首先,我们从包含项目使用信息的大型审查材料中找出句子。然后,我们利用一个神经文本到文本模型产生隐含的偏好问题。这项工作的主要贡献还包括一个多阶段的数据说明协议,利用众包为神经模型收集高质量的标签培训数据。我们表明,我们的方法在选择审查句子和将其转换为解答问题时是有效的,即使使用有限的培训数据。我们提供了一种分析模式不最优化的模式。