How people think, feel, and behave, primarily is a representation of their personality characteristics. By being conscious of personality characteristics of individuals whom we are dealing with or decided to deal with, one can competently ameliorate the relationship, regardless of its type. With the rise of Internet-based communication infrastructures (social networks, forums, etc.), a considerable amount of human communications take place there. The most prominent tool in such communications, is the language in written and spoken form that adroitly encodes all those essential personality characteristics of individuals. Text-based Automatic Personality Prediction (APP) is the automated forecasting of the personality of individuals based on the generated/exchanged text contents. This paper presents a novel knowledge graph-enabled approach to text-based APP that relies on the Big Five personality traits. To this end, given a text a knowledge graph which is a set of interlinked descriptions of concepts, was built through matching the input text's concepts with DBpedia knowledge base entries. Then, due to achieving more powerful representation the graph was enriched with the DBpedia ontology, NRC Emotion Intensity Lexicon, and MRC psycholinguistic database information. Afterwards, the knowledge graph which is now a knowledgeable alternative for the input text was embedded to yield an embedding matrix. Finally, to perform personality predictions the resulting embedding matrix was fed to four suggested deep learning models independently, which are based on convolutional neural network (CNN), simple recurrent neural network (RNN), long short term memory (LSTM) and bidirectional long short term memory (BiLSTM). The results indicated a considerable improvements in prediction accuracies in all of the suggested classifiers.


翻译:人们的思维、感觉和行为方式,主要表现他们的个性特征。通过意识到我们所处理或决定处理的个人的个性特征,人们可以胜任地改善这种关系,而不论其类型如何。随着基于互联网的通信基础设施(社交网络、论坛等)的兴起,大量的人文通信在那里发生。这种通信中最突出的工具是书面和口语语言,这种语言将个人的所有基本个性特征都解码成。基于文字的自动经常性个人人格预测(APP)就是根据生成/交换的文本内容对个人个性进行自动的预测。本文展示了一种基于文字的基于图表的方法,它依赖于五大个个个个个个个个个个个性特征。为此,有了一套知识图表,这是一套相互关联的概念描述,它是通过将输入文本的概念与DBpetia知识基础条目相匹配而成的。随后,该图表与DBBeptiacial Rencial Clicial(NRC Intenciality Lexionon,MRC produal prographyalalalalalalalal netal comma) 时间代表了一个基础的内存储数据库, 信息数据库里程数据库里程数据库里程数据库里程数据库里,它意味着一个基础信息数据库里程数据库里程数据库里程数据数据库。

0
下载
关闭预览

相关内容

LSTM是一种时间递归神经网络(RNN)[1],论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员