This paper presents our simulation of cyber-attacks and detection strategies on the traffic control system in Daytona Beach, FL. using Raspberry Pi virtual machines and the OPNSense firewall, along with traffic dynamics from SUMO and exploitation via the Metasploit framework. We try to answer the research questions: are we able to identify cyber attacks by only analyzing traffic flow patterns. In this research, the cyber attacks are focused particularly when lights are randomly turned all green or red at busy intersections by adversarial attackers. Despite challenges stemming from imbalanced data and overlapping traffic patterns, our best model shows 85\% accuracy when detecting intrusions purely using traffic flow statistics. Key indicators for successful detection included occupancy, jam length, and halting durations.


翻译:本文介绍了我们使用树莓派虚拟机与OPNSense防火墙,结合SUMO交通仿真系统的动态流量数据及Metasploit框架渗透技术,对佛罗里达州代托纳比奇交通控制系统进行的网络攻击仿真与检测策略研究。本研究试图回答以下研究问题:仅通过分析交通流量模式是否能够识别网络攻击。本研究中重点关注的攻击场景为:恶意攻击者在繁忙交叉路口将信号灯随机切换为全绿或全红状态。尽管面临数据不平衡与流量模式重叠等挑战,我们构建的最佳模型在仅使用交通流量统计数据进行入侵检测时达到了85%的准确率。成功检测的关键指标包括车道占有率、拥堵长度及车辆停滞时长。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员