This paper presents our simulation of cyber-attacks and detection strategies on the traffic control system in Daytona Beach, FL. using Raspberry Pi virtual machines and the OPNSense firewall, along with traffic dynamics from SUMO and exploitation via the Metasploit framework. We try to answer the research questions: are we able to identify cyber attacks by only analyzing traffic flow patterns. In this research, the cyber attacks are focused particularly when lights are randomly turned all green or red at busy intersections by adversarial attackers. Despite challenges stemming from imbalanced data and overlapping traffic patterns, our best model shows 85\% accuracy when detecting intrusions purely using traffic flow statistics. Key indicators for successful detection included occupancy, jam length, and halting durations.
翻译:本文介绍了我们使用树莓派虚拟机与OPNSense防火墙,结合SUMO交通仿真系统的动态流量数据及Metasploit框架渗透技术,对佛罗里达州代托纳比奇交通控制系统进行的网络攻击仿真与检测策略研究。本研究试图回答以下研究问题:仅通过分析交通流量模式是否能够识别网络攻击。本研究中重点关注的攻击场景为:恶意攻击者在繁忙交叉路口将信号灯随机切换为全绿或全红状态。尽管面临数据不平衡与流量模式重叠等挑战,我们构建的最佳模型在仅使用交通流量统计数据进行入侵检测时达到了85%的准确率。成功检测的关键指标包括车道占有率、拥堵长度及车辆停滞时长。