This work establishes that sparse Bayesian neural networks achieve optimal posterior contraction rates over anisotropic Besov spaces and their hierarchical compositions. These structures reflect the intrinsic dimensionality of the underlying function, thereby mitigating the curse of dimensionality. Our analysis shows that Bayesian neural networks equipped with either sparse or continuous shrinkage priors attain the optimal rates which are dependent on the intrinsic dimension of the true structures. Moreover, we show that these priors enable rate adaptation, allowing the posterior to contract at the optimal rate even when the smoothness level of the true function is unknown. The proposed framework accommodates a broad class of functions, including additive and multiplicative Besov functions as special cases. These results advance the theoretical foundations of Bayesian neural networks and provide rigorous justification for their practical effectiveness in high-dimensional, structured estimation problems.
翻译:本研究证明稀疏贝叶斯神经网络能够在各向异性Besov空间及其分层复合结构上达到最优后验收缩率。这些结构反映了潜在函数的本征维度,从而有效缓解维度灾难问题。分析表明,配备稀疏先验或连续收缩先验的贝叶斯神经网络均可获得依赖于真实结构本征维度的最优收敛速率。此外,我们证明这些先验具有速率自适应能力,即使在真实函数光滑度未知的情况下,后验分布仍能以最优速率收缩。所提出的理论框架适用于广泛的函数类别,其中加性Besov函数与乘性Besov函数均为特例。这些成果推进了贝叶斯神经网络的理论基础,为其在高维结构化估计问题中的实际有效性提供了严格的理论依据。