We study the problem of matrix completion in this paper. A spectral scaled Student prior is exploited to favour the underlying low-rank structure of the data matrix. Importantly, we provide a thorough theoretical investigation for our approach, while such an analysis is hard to obtain and limited in theoretical understanding of Bayesian matrix completion. More precisely, we show that our Bayesian approach enjoys a minimax-optimal oracle inequality which guarantees that our method works well under model misspecification and under general sampling distribution. Interestingly, we also provide efficient gradient-based sampling implementations for our approach by using Langevin Monte Carlo which is novel in Bayesian matrix completion. More specifically, we show that our algorithms are significantly faster than Gibbs sampler in this problem. To illustrate the attractive features of our inference strategy, some numerical simulations are conducted and an application to image inpainting is demonstrated.
翻译:我们研究了本文中的矩阵完成问题。 一个光谱缩放学生以前被利用来帮助数据矩阵的基本低级别结构。 重要的是,我们为我们的方法提供了彻底的理论调查,而这种分析很难获得,而且对贝叶斯矩阵完成的理论理解有限。 更确切地说,我们表明,我们的巴伊西亚方法拥有一种微小最大或最优的不平等,这保证了我们的方法在模型区分和一般抽样分布下运作良好。 有趣的是,我们还为我们的方法提供了高效的基于梯度的采样实施方法,我们使用的是兰埃文·蒙特卡洛(Bayesian 矩阵完成过程中的新版本 ) 。 更具体地说, 我们的算法比Gibbs取样员在这个问题上的速度要快得多。 为了说明我们的推断战略的吸引力,我们进行了一些数字模拟,并展示了图像涂料的应用。