We propose a B tree representation storing $n$ keys, each of $k$ bits, in either (a) $nk + O(nk / \lg n)$ bits or (b) $nk + O(nk \lg \lg n/ \lg n)$ bits of space supporting all B tree operations in either (a) $O(\lg n )$ time or (b) $O(\lg n / \lg \lg n)$ time, respectively. We can augment each node with an aggregate value such as the minimum value within its subtree, and maintain these aggregate values within the same space and time complexities. Finally, we give the sparse suffix tree as an application, and present a linear-time algorithm computing the sparse longest common prefix array from the suffix AVL tree of Irving et al. [JDA'2003].
翻译:我们建议使用B树表示方式,以(a) $nk + O(nk /\ lg n) 位元或(b) $nk + O(nk\ lg n/\ lg n/\ lg n) 位元,以(a) $(lgn) 时间或(b) $(lgn n /\ lg\ lg n) 时间分别储存美元键,以(a) $nk + O(nk /\ lg n) 位元,或(b) 美元(nk + O(nk / \ lg n) 位元) 位或(b) 美元。我们可以以其子树内的最低值来增加每个节点,并在相同的空间和时间复杂度内保持这些综合值。最后,我们将稀树作为应用程序,并提出一个线时算,从Irving 和 al 等 的fix 等 树头数最短的普通前缀阵列阵列阵列。 [JDA'2003] 。