Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning, next-generation data-driven communication systems will be intelligent with the characteristics of expressiveness, scalability, interpretability, and especially uncertainty modeling, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review a promising family of nonparametric Bayesian machine learning methods, i.e., Gaussian processes (GPs), and their applications in wireless communication. Since GPs achieve the expressive and interpretable learning ability with uncertainty, it is particularly suitable for wireless communication. Moreover, it provides a natural framework for collaborating data and empirical models (DEM). Specifically, we first envision three-level motivations of data-driven wireless communication using GPs. Then, we present the background of the GPs in terms of covariance structure and model inference. The expressiveness of the GP model using various interpretable kernel designs is surveyed, namely, stationary, non-stationary, deep, and multi-task kernels. Furthermore, we review the distributed GPs with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we list representative solutions and promising techniques that adopt GPs in wireless communication systems.


翻译:数据驱动范式是众所周知的,也是未来无线通信的突出要求。通过大数据和机器学习,下一代数据驱动的通信系统将具有智能,具有清晰度、可伸缩性、可解释性、特别是不确定性模型的特性,这在可预见的未来可以有信心地涉及多种潜在需求和个性化服务。在本文件中,我们从可变结构和模型推断的角度来回顾一个前景良好的非对称贝耶斯机器学习方法大家庭,即高西亚进程(GPs)及其在无线通信中的应用。由于GPs实现了有不确定性的直观和可解释的学习能力,它尤其适合无线通信。此外,它为合作的数据和经验模型(DEM)提供了一个自然框架。具体地说,我们首先设想了数据驱动的无线通信在三个层次上的积极性。然后,我们从可变性结构和模型推断的角度介绍GPs的背景。GPs模型使用各种可解释的内涵设计,即固定性、非静止、深度和多型式的学习能力,尤其适合无线式通信。最后,我们用有希望的GPS、可移动式的应用程序列表,在可发送的大规模应用的网络中,然后用大型可推广的大型GPs。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
53+阅读 · 2020年11月3日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员