Science is built on the scholarly consensus that shifts with time. This raises the question of how new and revolutionary ideas are evaluated and become accepted into the canon of science. Using two recently proposed metrics, we identify papers with high atypicality, which models how research draws upon novel combinations of prior research, and evaluate disruption, which captures the degree to which a study creates a new direction by eclipsing its intellectual forebears. Atypical papers are nearly two times more likely to disrupt science than conventional papers, but this is a slow process taking ten years or longer for disruption scores to converge. We provide the first computational model reformulating atypicality as the distance across latent knowledge spaces learned by neural networks. The evolution of this knowledge space characterizes how yesterday's novelty forms today's scientific conventions, which condition the novelty--and surprise--of tomorrow's breakthroughs.


翻译:科学是建立在随着时间的推移而变化的学术共识基础上的。 这就提出了如何评价新的革命思想并被接受为科学之柱的问题。 我们使用最近提出的两个指标,确定具有高度非典型性的论文,哪些模型研究利用先前研究的新型组合,并评估干扰,从而捕捉一项研究通过省略其智力前辈而创造新方向的程度。 非典型论文几乎比常规论文更可能破坏科学,但这是一个缓慢的过程,需要10年或更长时间的时间才能将破坏的分数汇到一起。 我们提供了第一个计算模型模型,将非典型性作为神经网络所学的潜在知识空间之间的距离。 这种知识空间的演变决定了昨天的新颖性是如何形成今天的科学公约的,这些新颖和出人意料地决定了明天的突破。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员