Problems of cooperation--in which agents seek ways to jointly improve their welfare--are ubiquitous and important. They can be found at scales ranging from our daily routines--such as driving on highways, scheduling meetings, and working collaboratively--to our global challenges--such as peace, commerce, and pandemic preparedness. Arguably, the success of the human species is rooted in our ability to cooperate. Since machines powered by artificial intelligence are playing an ever greater role in our lives, it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation. We see an opportunity for the field of artificial intelligence to explicitly focus effort on this class of problems, which we term Cooperative AI. The objective of this research would be to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems. Central goals include building machine agents with the capabilities needed for cooperation, building tools to foster cooperation in populations of (machine and/or human) agents, and otherwise conducting AI research for insight relevant to problems of cooperation. This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms. However, Cooperative AI is not the union of these existing areas, but rather an independent bet about the productivity of specific kinds of conversations that involve these and other areas. We see opportunity to more explicitly focus on the problem of cooperation, to construct unified theory and vocabulary, and to build bridges with adjacent communities working on cooperation, including in the natural, social, and behavioural sciences.


翻译:合作问题 -- -- 合作问题 -- -- 代理商寻求共同改善其福利的方法 -- -- 其合作问题 -- -- 普遍存在而且十分重要;这些问题可以找到,范围从我们日常工作,如在高速公路上驾车、安排会议、协同工作,到我们全球挑战 -- -- 如和平、商业和大流行病防备;可以说,人类物种的成功植根于我们的合作能力;由于人工智能驱动的机器正在我们生活中发挥越来越大的作用,必须使他们具备必要的合作和加强合作的能力;我们看到人工智能领域有机会明确集中努力解决这类自然问题,例如,在高速公路上驾车、安排会议时间和协作会议等;这项研究的目标是研究合作问题的许多方面,并在AI方面进行创新,以帮助解决这些问题;核心目标包括建立具备合作所需能力的机器代理商,建立工具,促进在(机器和/或人类)代理人中开展合作,以及进行与合作问题相关的独立研究;这一研究将当前关于多代理系统、游戏理论和社会选择、人类-理论互动和自然调整等领域的工作,包括建立这些社会-法律-法律-法律、法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员