Problems of cooperation--in which agents seek ways to jointly improve their welfare--are ubiquitous and important. They can be found at scales ranging from our daily routines--such as driving on highways, scheduling meetings, and working collaboratively--to our global challenges--such as peace, commerce, and pandemic preparedness. Arguably, the success of the human species is rooted in our ability to cooperate. Since machines powered by artificial intelligence are playing an ever greater role in our lives, it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation. We see an opportunity for the field of artificial intelligence to explicitly focus effort on this class of problems, which we term Cooperative AI. The objective of this research would be to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems. Central goals include building machine agents with the capabilities needed for cooperation, building tools to foster cooperation in populations of (machine and/or human) agents, and otherwise conducting AI research for insight relevant to problems of cooperation. This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms. However, Cooperative AI is not the union of these existing areas, but rather an independent bet about the productivity of specific kinds of conversations that involve these and other areas. We see opportunity to more explicitly focus on the problem of cooperation, to construct unified theory and vocabulary, and to build bridges with adjacent communities working on cooperation, including in the natural, social, and behavioural sciences.
翻译:合作问题 -- -- 合作问题 -- -- 代理商寻求共同改善其福利的方法 -- -- 其合作问题 -- -- 普遍存在而且十分重要;这些问题可以找到,范围从我们日常工作,如在高速公路上驾车、安排会议、协同工作,到我们全球挑战 -- -- 如和平、商业和大流行病防备;可以说,人类物种的成功植根于我们的合作能力;由于人工智能驱动的机器正在我们生活中发挥越来越大的作用,必须使他们具备必要的合作和加强合作的能力;我们看到人工智能领域有机会明确集中努力解决这类自然问题,例如,在高速公路上驾车、安排会议时间和协作会议等;这项研究的目标是研究合作问题的许多方面,并在AI方面进行创新,以帮助解决这些问题;核心目标包括建立具备合作所需能力的机器代理商,建立工具,促进在(机器和/或人类)代理人中开展合作,以及进行与合作问题相关的独立研究;这一研究将当前关于多代理系统、游戏理论和社会选择、人类-理论互动和自然调整等领域的工作,包括建立这些社会-法律-法律-法律、法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律-法律