How can society understand and hold accountable complex human and algorithmic decision-making systems whose systematic errors are opaque to the public? These systems routinely make decisions on individual rights and well-being, and on protecting society and the democratic process. Practical and statistical constraints on external audits--such as dimensional complexity--can lead researchers and regulators to miss important sources of error in these complex decision-making systems. In this paper, we design and implement a software-supported approach to audit studies that auto-generates audit materials and coordinates volunteer activity. We implemented this software in the case of political advertising policies enacted by Facebook and Google during the 2018 U.S. election. Guided by this software, a team of volunteers posted 477 auto-generated ads and analyzed the companies' actions, finding systematic errors in how companies enforced policies. We find that software can overcome some common constraints of audit studies, within limitations related to sample size and volunteer capacity.


翻译:社会如何理解和问责复杂的人类和算法决策系统,其系统性错误对公众来说不透明?这些系统定期就个人权利和福祉以及保护社会和民主进程作出决定; 对外部审计的实际限制和统计限制,如维度复杂度等,能够引导研究人员和监管者错过这些复杂决策系统的重要错误源; 在本文件中,我们设计和实施一个软件支持的审计研究方法,以自动生成审计材料并协调志愿人员活动; 在2018年美国选举期间由Facebook和Google颁布的政治广告政策中,我们采用了这一软件。在这个软件的指导下,一个由志愿人员组成的团队张贴了477个自动生成的广告,分析了公司的行动,找出公司如何执行政策的系统性错误。我们发现,软件可以在与抽样规模和志愿人员能力有关的限制范围内,克服审计研究中的一些常见的制约因素。

0
下载
关闭预览

相关内容

Facebook 是一个社交网络服务网站,于 2004 年 2 月 4 日上线。从 2006 年 9 月到 2007 年 9 月间,该网站在全美网站中的排名由第 60 名上升至第 7 名。同时 Facebook 是美国排名第一的照片分享站点。 2012年 2 月 1 日,Facebook向美国证券交易委员会提交集资规模为 50 亿美元的上市申请。
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
46+阅读 · 2021年10月4日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关VIP内容
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员