Design representation is a common task in the design process to facilitate learning, analysis, redesign, communication, and other design activities. Traditional representation techniques rely on human expertise and manual construction and are difficult to repeat and scale. Here, we propose a methodology that utilizes a pre-trained large-scale cross-domain design knowledge base to automatically generate design representation as a semantic network, i.e., a network of the entities and relations, based on design descriptions in texts or natural languages. Our methodology requires no ad hoc statistics. Based on a participatory study, we reveal the effectiveness and differences of the semantic network representations that are automatically generated with alternative knowledge bases. The findings illuminate future research directions to enhance design representation as semantic networks.
翻译:设计代表是设计过程中的一项共同任务,目的是促进学习、分析、重新设计、通信和其他设计活动,传统代表技术依靠人的专门知识和人工构建,难以重复和扩展。在这里,我们提出一种方法,利用预先培训的大型跨域设计知识库,自动生成设计代表,作为一个语义网络,即实体网络和关系,以文字或自然语言的设计说明为基础。我们的方法不需要特别的统计数据。根据参与性研究,我们揭示了语言网络代表的有效性和差异,这些代表是自动用替代知识库生成的。研究结果揭示了未来研究方向,以加强作为语言网络的设计代表。