By combining a certain approximation property in the spatial domain, and weighted $\ell_2$-summability of the Hermite polynomial expansion coefficients in the parametric domain obtained in [M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, ESAIM Math. Model. Numer. Anal. $\bf 51$(2017), 341-363] and [M. Bachmayr, A. Cohen, D. D\~ung and C. Schwab, SIAM J. Numer. Anal. $\bf 55$(2017), 2151-2186], we investigate linear non-adaptive methods of fully discrete polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration for parametric and stochastic elliptic PDEs with lognormal inputs. We explicitly construct such methods and prove corresponding convergence rates in $n$ of the approximations by them, where $n$ is a number characterizing computation complexity. The linear non-adaptive methods of fully discrete polynomial interpolation approximation are sparse-grid collocation methods. Moreover, they generate in a natural way discrete weighted quadrature formulas for integration of the solution to parametric and stochastic elliptic PDEs and its linear functionals, and the error of the corresponding integration can be estimated via the error in the Bochner space $L_1({\mathbb R}^\infty,V,\gamma)$ norm of the generating methods where $\gamma$ is the Gaussian probability measure on ${\mathbb R}^\infty$ and $V$ is the energy space. We also briefly consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and by-product problems of non-fully discrete polynomial interpolation approximation and integration. In particular, the convergence rate of non-fully discrete obtained in this paper improves the known one.


翻译:通过将空间域的某些近似属性与[M. Bachmayr、A. Cohen、R. DeVore和G. Migliorati,ESAM Math. 模型. Numer. Anal. $bf 51美元(2017)、341-363和[M. Bachmayr、A. Cohen、D. D ⁇ ung和C. Schwab、SIAM J. Numer. Anal. $\bf 55(2017),2151-21186]在参数域中获取的赫米石墨多元多元多元扩张系数多元扩张系数系数的加权平衡系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数数值的数值数值数值数值数值数值数值数值数值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年1月13日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员