Panel count data is common when the study subjects are exposed to recurrent events, observed only at discrete time points. In this article, we consider the regression analysis of panel count data with multiple modes of recurrence. We propose a proportional mean model to estimate the effect of covariates on the underlying counting process due to different modes of recurrence. The simultaneous estimation of baseline cumulative mean functions and regression parameters of $(k>1)$ recurrence modes are studied in detail. Asymptotic properties of the proposed estimators are also established. A Monte Carlo simulation study is carried out to validate the finite sample behaviour of the proposed estimators. The methods are applied to a real data arising from skin cancer chemoprevention trial.


翻译:当研究对象暴露于经常事件时,小组计数数据是常见的,只在离散的时间点观测到。在本条中,我们考虑了以多种重复模式对小组计数数据进行的回归分析。我们提出了一个比例平均模型,以估计由于不同重现模式而导致的共差对基本计数过程的影响。同时对基准累积平均函数和重现参数(k>1美元)进行详细研究。还确定了拟议估算者的非抽取性特性。进行了蒙特卡洛模拟研究,以验证拟议估算者的有限抽样行为。这些方法适用于皮肤癌预防实验产生的真实数据。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
专家报告 | 融合数据先验知识的智能图像增强
中国图象图形学报
16+阅读 · 2020年5月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关资讯
专家报告 | 融合数据先验知识的智能图像增强
中国图象图形学报
16+阅读 · 2020年5月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员