Graph Contrastive Learning (GCL) is unsupervised graph representation learning that can obtain useful representation of unknown nodes. The node representation can be utilized as features of downstream tasks. However, GCL is vulnerable to poisoning attacks as with existing learning models. A state-of-the-art defense cannot sufficiently negate adverse effects by poisoned graphs although such a defense introduces adversarial training in the GCL. To achieve further improvement, pruning adversarial edges is important. To the best of our knowledge, the feasibility remains unexplored in the GCL domain. In this paper, we propose a simple defense for GCL, EdgePruner. We focus on the fact that the state-of-the-art poisoning attack on GCL tends to mainly add adversarial edges to create poisoned graphs, which means that pruning edges is important to sanitize the graphs. Thus, EdgePruner prunes edges that contribute to minimizing the contrastive loss based on the node representation obtained after training on poisoned graphs by GCL. Furthermore, we focus on the fact that nodes with distinct features are connected by adversarial edges in poisoned graphs. Thus, we introduce feature similarity between neighboring nodes to help more appropriately determine adversarial edges. This similarity is helpful in further eliminating adverse effects from poisoned graphs on various datasets. Finally, EdgePruner outputs a graph that yields the minimum contrastive loss as the sanitized graph. Our results demonstrate that pruning adversarial edges is feasible on six datasets. EdgePruner can improve the accuracy of node classification under the attack by up to 5.55% compared with that of the state-of-the-art defense. Moreover, we show that EdgePruner is immune to an adaptive attack.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月1日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员