Customer purchasing behavior analysis plays a key role in developing insightful communication strategies between online vendors and their customers. To support the recent increase in online shopping trends, in this work, we present a customer purchasing behavior analysis system using supervised, unsupervised and semi-supervised learning methods. The proposed system analyzes session and user-journey level purchasing behaviors to identify customer categories/clusters that can be useful for targeted consumer insights at scale. We observe higher sensitivity to the design of online shopping portals for session-level purchasing prediction with accuracy/recall in range 91-98%/73-99%, respectively. The user-journey level analysis demonstrates five unique user clusters, wherein 'New Shoppers' are most predictable and 'Impulsive Shoppers' are most unique with low viewing and high carting behaviors for purchases. Further, cluster transformation metrics and partial label learning demonstrates the robustness of each user cluster to new/unlabelled events. Thus, customer clusters can aid strategic targeted nudge models.
翻译:客户购买行为分析在制定在线供应商及其客户之间有见地的通信战略方面发挥着关键作用。 为了支持最近在线购物趋势的增长,我们在这项工作中提出了一个客户购买行为分析系统,使用监督、不受监督和半监督的学习方法。 拟议的系统分析会话和用户-旅程一级的采购行为,以确定客户类别/群组,这些类别/群组可以用于规模上的目标消费者洞察力。 我们观察到对设计在线购物门户的敏感性较高,以便以会议一级采购预测的准确度/应征率分别为91-98% 73-99 % 。 用户-旅程水平分析显示五个独特的用户群,其中“新购物者”最可预测,“易行客”最独特,低浏览率和高的购买车道行为。 此外,集群转换指标和部分标签学习显示每个用户群对新的/未标码事件非常可靠。 因此,客户群群群可以帮助有战略目标的计算模型。