Survival analysis relies fundamentally on the semi-parametric Cox Proportional Hazards (CoxPH) model and the parametric Accelerated Failure Time (AFT) model. CoxPH assumes constant hazard ratios, often failing to capture real-world dynamics, while traditional AFT models are limited by rigid distributional assumptions. Although deep learning models like DeepAFT address these constraints by improving predictive accuracy and handling censoring, they inherit the significant challenge of black-box interpretability. The recent introduction of CoxKAN demonstrated the successful integration of Kolmogorov-Arnold Networks (KANs), a novel architecture that yields highly accurate and interpretable symbolic representations, within the CoxPH framework. Motivated by the interpretability gains of CoxKAN, we introduce KAN-AFT (Kolmogorov Arnold Network-based AFT), the first framework to apply KANs to the AFT model. KAN-AFT effectively models complex nonlinear relationships within the AFT framework. Our primary contributions include: (i) a principled AFT-KAN formulation, (ii) robust optimization strategies for right-censored observations (e.g., Buckley-James and IPCW), and (iii) an interpretability pipeline that converts the learned spline functions into closed-form symbolic equations for survival time. Empirical results on multiple datasets confirm that KAN-AFT achieves performance comparable to or better than DeepAFT, while uniquely providing transparent, symbolic models of the survival process.
翻译:生存分析主要依赖于半参数Cox比例风险模型和参数化加速失效时间模型。CoxPH模型假设风险比恒定,往往难以捕捉现实世界的动态变化,而传统的AFT模型则受限于严格的分布假设。尽管像DeepAFT这样的深度学习模型通过提高预测精度和处理删失数据来应对这些限制,但它们继承了黑箱可解释性这一重大挑战。最近提出的CoxKAN展示了在CoxPH框架内成功整合Kolmogorov-Arnold网络——一种能够产生高精度且可解释符号表示的新型架构。受CoxKAN在可解释性方面取得的进展启发,我们提出了KAN-AFT,这是首个将KAN应用于AFT模型的框架。KAN-AFT在AFT框架内有效建模了复杂的非线性关系。我们的主要贡献包括:一个原则性的AFT-KAN公式化方法;针对右删失观测的鲁棒优化策略;以及一个将学习到的样条函数转化为生存时间的闭式符号方程的可解释性流程。在多个数据集上的实证结果表明,KAN-AFT实现了与DeepAFT相当或更优的性能,同时独特地提供了生存过程的透明符号模型。