Existing system dealing with online complaint provides a final decision without explanations. We propose to analyse the complaint text of internet fraud in a fine-grained manner. Considering the complaint text includes multiple clauses with various functions, we propose to identify the role of each clause and classify them into different types of fraud element. We construct a large labeled dataset originated from a real finance service platform. We build an element identification model on top of BERT and propose additional two modules to utilize the context of complaint text for better element label classification, namely, global context encoder and label refiner. Experimental results show the effectiveness of our model.


翻译:处理在线投诉的现有系统提供了无解释的最终决定。我们提议以细微方式分析互联网欺诈的投诉文本。考虑到投诉文本包含多项条款,并包含各种功能,我们提议确定每个条款的作用,将其分为不同类型的欺诈要素。我们从真正的财务服务平台上建立了一个大型的标签数据集。我们在BERT上方建立一个要素识别模型,并提议另外两个模块,利用投诉文本的背景来更好地进行元素标签分类,即全球背景编码和标签精细。实验结果显示了我们的模型的有效性。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2021年9月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2021年9月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员