Existing system dealing with online complaint provides a final decision without explanations. We propose to analyse the complaint text of internet fraud in a fine-grained manner. Considering the complaint text includes multiple clauses with various functions, we propose to identify the role of each clause and classify them into different types of fraud element. We construct a large labeled dataset originated from a real finance service platform. We build an element identification model on top of BERT and propose additional two modules to utilize the context of complaint text for better element label classification, namely, global context encoder and label refiner. Experimental results show the effectiveness of our model.
翻译:处理在线投诉的现有系统提供了无解释的最终决定。我们提议以细微方式分析互联网欺诈的投诉文本。考虑到投诉文本包含多项条款,并包含各种功能,我们提议确定每个条款的作用,将其分为不同类型的欺诈要素。我们从真正的财务服务平台上建立了一个大型的标签数据集。我们在BERT上方建立一个要素识别模型,并提议另外两个模块,利用投诉文本的背景来更好地进行元素标签分类,即全球背景编码和标签精细。实验结果显示了我们的模型的有效性。