The image-to-image translation is a learning task to establish a visual mapping between an input and output image. The task has several variations differentiated based on the purpose of the translation, such as synthetic to real translation, photo to caricature translation, and many others. The problem has been tackled using different approaches, either through traditional computer vision methods, as well as deep learning approaches in recent trends. One approach currently deemed popular and effective is using the conditional generative adversarial network, also known shortly as cGAN. It is adapted to perform image-to-image translation tasks with typically two networks: a generator and a discriminator. This project aims to evaluate the robustness of the Pix2Pix model by applying the Pix2Pix model to datasets consisting of cartoonized images. Using the Pix2Pix model, it should be possible to train the network to generate real-life images from the cartoonized images.
翻译:图像到图像翻译是一项学习任务,目的是在输入图像和输出图像之间建立直观映射。 任务基于翻译的目的有几种差异, 如合成到真实翻译、 照片到漫画翻译和其他许多不同。 问题已经通过不同的方法来解决, 要么通过传统的计算机视觉方法, 以及近期趋势中的深层次学习方法。 目前认为流行和有效的一种方法是使用有条件的基因对抗网络, 也很快被称为 CGAN 。 它被调整为执行图像到图像翻译任务, 通常有两个网络: 一个生成器和一个歧视器。 这个项目的目的是通过将 Pix2Pix 模型应用于由漫画图像组成的数据集, 来评估 Pix2Pix 模型的稳健性。 使用 Pix2Pix 模型, 应该有可能对网络进行培训, 以便从卡通图像中生成真实的图像。