This paper describes the submission to the IWSLT 2021 offline speech translation task by the UPC Machine Translation group. The task consists of building a system capable of translating English audio recordings extracted from TED talks into German text. Submitted systems can be either cascade or end-to-end and use a custom or given segmentation. Our submission is an end-to-end speech translation system, which combines pre-trained models (Wav2Vec 2.0 and mBART) with coupling modules between the encoder and decoder, and uses an efficient fine-tuning technique, which trains only 20% of its total parameters. We show that adding an Adapter to the system and pre-training it, can increase the convergence speed and the final result, with which we achieve a BLEU score of 27.3 on the MuST-C test set. Our final model is an ensemble that obtains 28.22 BLEU score on the same set. Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2.0 for identifying periods of untranscribable text and can bring improvements of 2.5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.
翻译:本文描述由UPC机器翻译组向IWSLT 2021离线语音翻译任务提交的提交文件。 任务包括建立一个能够将TED会谈中提取的英语录音翻译成德文的系统。 提交系统可以是级联或端到端的, 并使用自定义或给定的分区。 我们的提交是一个端到端语音翻译系统, 将预先训练的模型( Wav2Vec 2.0 和 mBART) 与编码器和解码器的组合模块结合起来, 并使用高效的微调技术, 只培训其总参数的20%。 我们表明, 给系统添加一个适配器和预培训, 能够提高汇合速度和最终结果, 从而我们在 MuST- C 测试集中达到27.3 BLEU, 我们的最后模型是一个组合, 在同一集中获得28.22 BLEU的评分。 我们的提交文件还使用一种定制的分算算算算法, 使用经过预先训练的Wav2Vec 2.0, 用于确定不可翻译的文本的时期, 并改进了系统, 将2.5 至 BLEUCS 的评为2019 的评为结果, 。