Closed form expressions for the domination number of an $n \times m$ grid have attracted significant attention, and an exact expression has been obtained in 2011 by Gon\c{c}alves et al. In this paper, we present our results on obtaining new lower bounds on the connected domination number of an $n \times m$ grid. The problem has been solved for grids with up to $4$ rows and with $6$ rows by Tolouse et al and the best currently known lower bound for arbitrary $m,n$ is $\lceil\frac{mn}{3}\rceil$. Fujie came up with a general construction for a connected dominating set of an $n \times m$ grid of size $\min \left\{2n+(m-4)+\lfloor\frac{m-4}{3}\rfloor(n-2), 2m+(n-4)+\lfloor\frac{n-4}{3}\rfloor(m-2) \right\}$ . In this paper, we investigate whether this construction is indeed optimum. We prove a new lower bound of $\left\lceil\frac{mn+2\lceil\frac{\min \{m,n\}}{3}\rceil}{3} \right\rceil$ for arbitrary $m,n \geq 4$.


翻译:$\times m great 的封闭式表达方式吸引了人们的极大关注, 2011年Gon\ c{c}alves 等人也获得了准确的表达方式。 在本文中, 我们展示了在一个 $\ times meet 的连接支配数字上获得新的下限的结果。 问题已经解决了, 最多为 $ $\ times meet 的网格和 Tolouse et al 的 $6 + (n)\ 4\\ latime) 底线 $n - 3\ r2\ r\ rceil$。 在本文中, 我们调查了这一构建是否真正最佳。 我们证明了一个任意性\\\\ rc\ rc_\ rceil\ rcel\ $\ rclex n\\\\ rcelex n\\ n\\\\\\\\\ rcele\\ m\ n\ n\ n\ r\ remaxylex n $_ refer=rcrel=r= $_ $_rcreax_ 4\\\\\\\\\ m\ m\ m\ laxr\ m\ m lafrel\ n

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
已删除
将门创投
13+阅读 · 2019年4月17日
综述:DenseNet—Dense卷积网络(图像分类)
专知
85+阅读 · 2018年11月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月6日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
13+阅读 · 2019年4月17日
综述:DenseNet—Dense卷积网络(图像分类)
专知
85+阅读 · 2018年11月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员