Deep Neural Networks (DNNs) have transformed the field of machine learning and are widely deployed in many applications involving image, video, speech and natural language processing. The increasing compute demands of DNNs have been widely addressed through Graphics Processing Units (GPUs) and specialized accelerators. However, as model sizes grow, these von Neumann architectures require very high memory bandwidth to keep the processing elements utilized as a majority of the data resides in the main memory. Processing in memory has been proposed as a promising solution for the memory wall bottleneck for ML workloads. In this work, we propose a new DRAM-based processing-in-memory (PIM) multiplication primitive coupled with intra-bank accumulation to accelerate matrix vector operations in ML workloads. The proposed multiplication primitive adds < 1% area overhead and does not require any change in the DRAM peripherals. Therefore, the proposed multiplication can be easily adopted in commodity DRAM chips. Subsequently, we design a DRAM-based PIM architecture, data mapping scheme and dataflow for executing DNNs within DRAM. System evaluations performed on networks like AlexNet, VGG16 and ResNet18 show that the proposed architecture, mapping, and data flow can provide up to 19.5x speedup over an NVIDIA Titan Xp GPU highlighting the need to overcome the memory bottleneck in future generations of DNN hardware.
翻译:深心神经网络(DNNS)改造了机器学习领域,在涉及图像、视频、语音和自然语言处理的许多应用中广泛运用了机器学习领域。 DNNS不断增长的计算需求通过图形处理股(GPUs)和专门的加速器得到了广泛的解决。然而,随着模型规模的扩大,这些冯纽曼建筑需要非常高的记忆带宽,以保持作为大部分数据在主记忆中使用的处理元素。为ML工作量的内存墙瓶颈,提出了一个很有希望的解决方案。在这项工作中,我们提出了一个新的基于 DRAM 的处理- 模版(PIM) 复制(PIM), 加上银行内部累积, 以加速ML工作量的矩阵矢量操作。拟议的倍增原始结构增加了 < 1% 的区域管理费, 不需要对 DRAM 外围区域作任何改变。因此, 拟议的倍增功能很容易在商品 DRAM 芯片中被采用。随后,我们设计了一个基于 DRAMM 的 PIM 结构、 数据映像 和数据流化数据在 DNNNP 内执行 DNAMDNP18 的 DISG HIM 的 DIS 快速结构中进行系统评估,,, 系统系统在拟议的网络上可以显示一个超过 CVGGGGGIS AS 的移动的服务器 15 的系统结构, 。