This paper considers the quickest detection problem for hidden Markov models (HMMs) in a Bayesian setting. We construct an augmented HMM representation of the problem that allows the application of a dynamic programming approach to prove that Shiryaev's rule is an (exact) optimal solution. This augmented representation highlights the problem's fundamental information structure and suggests possible relaxations to more exotic change event priors not appearing in the literature. Finally, this augmented representation also allows us to present an efficient computational method for implementing the optimal solution.
翻译:本文在贝叶斯设置下考虑了隐马尔可夫模型中的最快检测问题。我们构造了一个增广的HMM表示问题,以便应用动态规划方法来证明本文所提出的 Shiryaev's 规则是最优解(精确比较值)。这个增广表示突出了问题的基本信息结构,并提示了可以将更多奇特的变化事件先验松弛到文献中没有出现的情况。最后,这个增广表示也允许我们提出了一个实现最优解的高效计算方法。