Although heuristic search is one of the most successful approaches to classical planning, this planning paradigm does not apply straightforwardly to Generalized Planning (GP). Planning as heuristic search traditionally addresses the computation of sequential plans by searching in a grounded state-space. On the other hand GP aims at computing algorithm-like plans, that can branch and loop, and that generalize to a (possibly infinite) set of classical planning instances. This paper adapts the planning as heuristic search paradigm to the particularities of GP, and presents the first native heuristic search approach to GP. First, the paper defines a novel GP solution space that is independent of the number of planning instances in a GP problem, and the size of these instances. Second, the paper defines different evaluation and heuristic functions for guiding a combinatorial search in our GP solution space. Lastly the paper defines a GP algorithm, called Best-First Generalized Planning (BFGP), that implements a best-first search in the solution space guided by our evaluation/heuristic functions.


翻译:虽然长期搜索是典型规划最成功的方法之一,但这一规划范式并不直接适用于一般规划(GP),而规划(Huristic search)传统上是通过在有根有基的状态空间搜索来计算顺序计划的计算。另一方面,GP旨在计算类似算法的计划,这种计划可以分流和循环,并概括为一套(可能无限的)典型规划实例。本文将规划作为超常搜索模式,以适应GP的特殊性,并提出了第一个本地的GP超常搜索方法。首先,该文件界定了一个新的GP解决方案空间,该空间独立于GP问题规划实例的数量和这些实例的规模。第二,该文件界定了指导我们GP解决方案空间组合搜索的不同评价和超常功能。最后,该文件定义了一种GP算法,称为最佳第一通用规划(BFGPGP),该算作以我们的评估/超常功能为指导的解决方案空间的最佳第一搜索。

0
下载
关闭预览

相关内容

【CVPR2021】多实例主动学习目标检测
专知会员服务
42+阅读 · 2021年4月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
12+阅读 · 2019年7月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【CVPR2021】多实例主动学习目标检测
专知会员服务
42+阅读 · 2021年4月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
12+阅读 · 2019年7月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员