Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) through real-time delivery and the provision of the appropriate representations for all viewers is a challenging problem. In our paper, we introduce a machine-learning based predictive resource allocation framework for geo-distributed cloud sites, considering the delay and quality constraints to guarantee the maximum QoS for viewers and the minimum cost for content providers. First, we present an offline optimization that decides the required transcoding resources in distributed regions near the viewers with a trade-off between the QoS and the overall cost. Second, we use machine learning to build forecasting models that proactively predict the approximate transcoding resources to be reserved at each cloud site ahead of time. Finally, we develop a Greedy Nearest and Cheapest algorithm (GNCA) to perform the resource allocation of real-time broadcasted videos on the rented resources. Extensive simulations have shown that GNCA outperforms the state-of-the art resource allocation approaches for crowdsourced live streaming by achieving more than 20% gain in terms of system cost while serving the viewers with relatively lower latency.
翻译:Facebook Live、 YouNow、 Douyu 和 Twitch 等现场直播视频流(现场直播) 服务(现场直播) 正在增加最近的势头。 以成本效益高的方式分配有限资源,同时通过实时交付和为所有观众提供适当的演示来最大限度地提高服务质量( QOS ), 是一个具有挑战性的问题。 在我们的论文中, 我们为地理分布的云点引入基于机器学习的预测资源分配框架, 考虑延迟和质量限制, 以保障收看者的最大QOS 和内容提供者的最低成本。 首先, 我们展示了一种离线优化, 以在收视器附近的分布区域决定所需的转换资源, 并在QOS 和总成本之间进行交易。 其次, 我们利用机器学习来建立预测模型, 积极主动地预测每个云点预留大约的转码资源。 最后, 我们开发了一种Greedy Nest 和 Chapest 算法( GENCA), 以对租赁资源上实时播放视频的资源分配进行资源分配。 大规模模拟显示GNCA 以比 Rental Rental 20 的系统更接近成本配置, 。 同时, 以较低的图像方式展示了GNCANA 。