Explainable artificial intelligence (XAI) twin systems will be a fundamental enabler of zero-touch network and service management (ZSM) for sixth-generation (6G) wireless networks. A reliable XAI twin system for ZSM requires two composites: an extreme analytical ability for discretizing the physical behavior of the Internet of Everything (IoE) and rigorous methods for characterizing the reasoning of such behavior. In this paper, a novel neuro-symbolic explainable artificial intelligence twin framework is proposed to enable trustworthy ZSM for a wireless IoE. The physical space of the XAI twin executes a neural-network-driven multivariate regression to capture the time-dependent wireless IoE environment while determining unconscious decisions of IoE service aggregation. Subsequently, the virtual space of the XAI twin constructs a directed acyclic graph (DAG)-based Bayesian network that can infer a symbolic reasoning score over unconscious decisions through a first-order probabilistic language model. Furthermore, a Bayesian multi-arm bandits-based learning problem is proposed for reducing the gap between the expected explained score and the current obtained score of the proposed neuro-symbolic XAI twin. To address the challenges of extensible, modular, and stateless management functions in ZSM, the proposed neuro-symbolic XAI twin framework consists of two learning systems: 1) an implicit learner that acts as an unconscious learner in physical space, and 2) an explicit leaner that can exploit symbolic reasoning based on implicit learner decisions and prior evidence. Experimental results show that the proposed neuro-symbolic XAI twin can achieve around 96.26% accuracy while guaranteeing from 18% to 44% more trust score in terms of reasoning and closed-loop automation.
翻译:可解释的人工智能(XAI)双胞胎系统将是六代(6G)无线网络的零触摸网络和服务管理(ZSM)的基本推进器。ZSM的可靠的 XAI双胞胎系统需要两种复合材料:一种极强的分析能力,可以分解一切互联网的物理行为(IoE),一种严格的方法来描述这种行为的推理。在本文中,提出了一个新的神经-共振可解释的人工智能双胞胎框架,以便能够为无线IoE提供可靠的ZSM。 XAI双胞胎的物理空间执行一个由神经网络驱动的多变量回归,以捕捉到基于时间的无线 IOE环境,同时确定IA双胞胎服务集合的无意识决定。随后,XAI双胞胎的虚拟空间构建了定向环球图(DAG)基础的网络,这可以推导出一种象征性的推理推论,通过一阶的稳度语言模型来判断无线的IOLIE。此外,BAyal的多臂匪学习研究问题提议减少预期的准确度分数和基于时间轴的IAIAILLLILIL的分数和当前分数评分数的双分数。提议,在X级的SLLILLLLLLLLLILL的分数函数的分数中,在S值中,在SOILILILILI的分数中,在S值中,在SAL的分数中可以显示的分算法的分数的分数的分数的分数(在前的分数,在S),在SILILILOFI),在SO值中,在SOFILO值中,在SOF的分数中,在拟议的的分数中,在SO值中,在前的分数中可以算为A的分数中,在前的分数中,在SAL的分数中,在SO值的分数的分数中,在SOO值的分数中,在SOILIAFILILILILILILILILILILILILILIFI的