Lexical semantic change detection is a new and innovative research field. The optimal fine-tuning of models including pre- and post-processing is largely unclear. We optimize existing models by (i) pre-training on large corpora and refining on diachronic target corpora tackling the notorious small data problem, and (ii) applying post-processing transformations that have been shown to improve performance on synchronic tasks. Our results provide a guide for the application and optimization of lexical semantic change detection models across various learning scenarios.
翻译:对包括加工前和加工后在内的模型进行最佳微调,在很大程度上尚不明确,我们优化了现有模型,办法是:(一) 对大型公司进行预先培训,并完善处理臭名昭著的小数据问题的对等目标公司,以及(二) 应用显示的后处理变换,以提高同步任务的业绩,我们的成果为各种学习情景中应用和优化逻辑语变换检测模型提供了指南。