Digital human animation relies on high-quality 3D models of the human face: rigs. A face rig must be accurate and, at the same time, fast to compute. One of the most common rigging models is the blendshape model. We propose a novel algorithm for solving the nonconvex inverse rig problem in facial animation. Our approach is model-based, but in contrast with previous model-based approaches, we use a quadratic instead of the linear approximation to the higher order rig model. This increases the accuracy of the solution by 8 percent on average and, confirmed by the empirical results, increases the sparsity of the resulting parameter vector -- an important feature for interpretability by animation artists. The proposed solution is based on a Levenberg-Marquardt (LM) algorithm, applied to a nonconvex constrained problem with sparsity regularization. In order to reduce the complexity of the iterates, a paradigm of Majorization Minimization (MM) is further invoked, which leads to an easy to solve problem that is separable in the parameters at each algorithm iteration. The algorithm is evaluated on a number of animation datasets, proprietary and open-source, and the results indicate the superiority of our method compared to the standard approach based on the linear rig approximation. Although our algorithm targets the specific problem, it might have additional signal processing applications.
翻译:人类数字动画依赖于高品质的 3D 人类脸部模型: 钻机。 面部钻机必须准确, 同时快速计算。 最常用的操纵模型之一是混合形状模型。 我们提出了解决面部动画中非对流钻机问题的新型算法。 我们的方法基于模型, 但与以前基于模型的方法相反, 我们使用四边形, 而不是更高级的排序钻机模型的线性近似。 这平均地提高了解决方案的准确性8%, 并且根据经验结果, 增加了由此产生的参数矢量的宽度 -- -- 动画家解释性的一个重要特征。 提议的解决办法以Levenberg- Marquardt (LM) 算法为基础, 用于解决面部动图限制的非对立钻机问题。 为了降低偏移的复杂性, 我们进一步采用了一个“ 最小化” 模式, 从而使得一个在每种算法参数上可以分辨的问题更容易解决。 算法是根据动动画- Marquardtalat (LM) 算法的多个信号处理方法进行了评估, 。