A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).


翻译:高高度平台站(HAPS)是一个网络节点,在20公里高空平流层运行,有助于提供通信服务,在自主航空、阵列天线、太阳能板效率水平和电池能源密度等领域的技术创新下,在繁荣的工业生态系统的推动下,HAPS已成为下一代无线网络不可或缺的组成部分。在本篇文章中,我们为HAPS的未来网络提供了一个愿景和框架,并辅之以全面的最新文献审查。我们强调了HAPS系统尚未实现的潜力,并阐述了其为大都市地区服务的独特能力。讨论了HAPS能源和有效载荷系统的最新进步和有希望的技术。提出了将新兴的可配置智能表面技术纳入HAPS系统通信载荷以提供具有成本效益的部署。HAPS系统中的无线电资源管理与协同物理技术一起,包括更快的NFT(FN) 展示了HAPS系统尚未实现的潜能化潜力。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
已删除
inpluslab
8+阅读 · 2019年10月29日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
已删除
inpluslab
8+阅读 · 2019年10月29日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员