We introduce an early-phase bottleneck analysis and characterization model called the F-1 for designing computing systems that target autonomous Unmanned Aerial Vehicles (UAVs). The model provides insights by exploiting the fundamental relationships between various components in the autonomous UAV, such as sensor, compute, and body dynamics. To guarantee safe operation while maximizing the performance (e.g., velocity) of the UAV, the compute, sensor, and other mechanical properties must be carefully selected or designed. The F-1 model provides visual insights that can aid a system architect in understanding the optimal compute design or selection for autonomous UAVs. The model is experimentally validated using real UAVs, and the error is between 5.1\% to 9.5\% compared to real-world flight tests. An interactive web-based tool for the F-1 model called Skyline is available for free of cost use at: ~\url{https://bit.ly/skyline-tool}
翻译:我们引入了早期瓶颈分析和定性模型,称为F-1,用于设计针对自主无人驾驶飞行器(无人驾驶飞行器)的计算机系统。该模型通过利用自动无人驾驶飞行器各组成部分之间的基本关系,例如传感器、计算和身体动态,提供了洞察力。为了保证安全操作,同时必须谨慎选择或设计无人驾驶飞行器的性能最大化(例如速度)、计算器、传感器和其他机械特性。F-1模型提供了视觉洞察力,有助于系统设计师了解自主无人驾驶飞行器的最佳计算设计或选择。该模型是使用真正的无人驾驶飞行器进行实验验证的,与现实世界飞行测试相比,误差介于5.1 ⁇ -9.5 ⁇ -9.5 ⁇ 之间。一个名为Skyline的F-1模型的互动式网络工具可以免费使用: ⁇ url{https://bit.ly/skyline-tool}