Control Barrier Functions (CBFs) have emerged as efficient tools to address the safe navigation problem for robot applications. However, synthesizing informative and obstacle motion-aware CBFs online using real-time sensor data remains challenging, particularly in unknown and dynamic scenarios. Motived by this challenge, this paper aims to propose a novel Gaussian Process-based formulation of CBF, termed the Dynamic Log Gaussian Process Control Barrier Function (DLGP-CBF), to enable real-time construction of CBF which are both spatially informative and responsive to obstacle motion. Firstly, the DLGP-CBF leverages a logarithmic transformation of GP regression to generate smooth and informative barrier values and gradients, even in sparse-data regions. Secondly, by explicitly modeling the DLGP-CBF as a function of obstacle positions, the derived safety constraint integrates predicted obstacle velocities, allowing the controller to proactively respond to dynamic obstacles' motion. Simulation results demonstrate significant improvements in obstacle avoidance performance, including increased safety margins, smoother trajectories, and enhanced responsiveness compared to baseline methods.
翻译:控制屏障函数(CBFs)已成为解决机器人应用安全导航问题的高效工具。然而,利用实时传感器数据在线合成具有信息量且能感知障碍物运动的CBF仍具挑战性,尤其在未知动态场景中。基于此挑战,本文旨在提出一种基于高斯过程的新型CBF构建方法,称为动态对数高斯过程控制屏障函数(DLGP-CBF),以实现实时构建兼具空间信息性和障碍物运动响应性的CBF。首先,DLGP-CBF利用高斯过程回归的对数变换生成平滑且信息丰富的屏障值及梯度,即使在稀疏数据区域亦能保持有效性。其次,通过将DLGP-CBF显式建模为障碍物位置的函数,所推导的安全约束整合了预测的障碍物速度,使控制器能够主动响应动态障碍物的运动。仿真结果表明,相较于基线方法,该方法在避障性能上取得显著提升,包括更大的安全裕度、更平滑的轨迹以及更强的动态响应能力。