We study the problem of multivariate $L_2$-approximation of functions in a weighted Korobov space using a median lattice-based algorithm recently proposed by the authors. In the original work, the algorithm requires knowledge of the smoothness and weights of the Korobov space to construct the hyperbolic cross index set, where each coefficient is estimated via the median of approximations obtained from randomly shifted, randomly chosen rank-1 lattice rules. In this paper, we introduce a \emph{universal median lattice-based algorithm}, which eliminates the need for any prior information on smoothness and weights. Although the tractability property of the algorithm slightly deteriorates, we prove that, for individual functions in the Korobov space with arbitrary smoothness and (downward-closed) weights, it achieves an $L_2$-approximation error arbitrarily close to the optimal rate with respect to the number of function evaluations. Numerical experiments are conducted to support our theoretical claim.
翻译:我们研究在加权Korobov空间中,使用作者近期提出的基于中位数格点算法进行多元函数$L_2$逼近的问题。在原工作中,该算法需要已知Korobov空间的光滑性与权重参数以构造双曲交叉指标集,其中每个系数通过随机偏移、随机选取的秩-1格点规则所获近似值的中位数进行估计。本文提出一种\emph{通用中位数格点算法},该算法无需任何关于光滑性与权重的先验信息。尽管算法的可处理性略有下降,但我们证明:对于具有任意光滑度及(向下封闭)权重的Korobov空间中的单个函数,该算法能以任意接近最优收敛速率实现$L_2$逼近误差(相对于函数求值次数)。数值实验验证了理论结论。