Fifth-generation (5G) systems will extensively employ radio access network (RAN) softwarization. This key innovation enables the instantiation of "virtual cellular networks" running on different slices of the shared physical infrastructure. In this paper, we propose the concept of Private Cellular Connectivity as a Service (PCCaaS), where infrastructure providers deploy covert network slices known only to a subset of users. We then present SteaLTE as the first realization of a PCCaaS-enabling system for cellular networks. At its core, SteaLTE utilizes wireless steganography to disguise data as noise to adversarial receivers. Differently from previous work, however, it takes a full-stack approach to steganography, contributing an LTE-compliant steganographic protocol stack for PCCaaS-based communications, and packet schedulers and operations to embed covert data streams on top of traditional cellular traffic (primary traffic). SteaLTE balances undetectability and performance by mimicking channel impairments so that covert data waveforms are almost indistinguishable from noise. We evaluate the performance of SteaLTE on an indoor LTE-compliant testbed under different traffic profiles, distance and mobility patterns. We further test it on the outdoor PAWR POWDER platform over long-range cellular links. Results show that in most experiments SteaLTE imposes little loss of primary traffic throughput in presence of covert data transmissions (< 6%), making it suitable for undetectable PCCaaS networking.


翻译:第五代( 5G) 系统将广泛使用无线电接入网络( RAN) 软瓦化。 这一关键创新使“ 虚拟手机网络” 可以在共享的有形基础设施的不同片段上运行。 在本文中, 我们提议将私人细胞连接作为服务( PCCaaaS) 的概念, 基础设施供应商将隐藏网络切片只用于一组用户。 然后我们将SteaLTE作为手机网络的PCCaaS增强系统首次实现。 在其核心部分, SteaLTE使用无线透视法将数据伪装为对立接收器的噪音。 然而, 与先前的工作不同, 它需要全方位的切切取方法, 提供符合LTECaS 基础通信的隐蔽网络拼图堆, 以及将隐蔽数据流嵌入传统蜂窝流量( 主要交通流量) 。 SteaLTE 平衡着不易探测的直流和性能, 因此, 隐藏的数据波状接收器接收器将几乎无法在远程传输链路段上进行测试。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月4日
Arxiv
0+阅读 · 2021年4月3日
Arxiv
0+阅读 · 2021年4月2日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员