Determining the complexity of computing Gr\"{o}bner bases is an important problem both in theory and in practice, and for that the solving degree plays a key role. In this paper, we study the solving degrees of affine semi-regular sequences and their homogenized sequences. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\"{o}bner bases of the ideal generated by an affine semi-regular sequence. This paper is a sequel of the authors' previous work and gives additional results on the solving degrees and important behaviors of Gr\"obner basis computation.
翻译:暂无翻译